Posts Tagged absorbers

Demystifying Acoustic Data: Part 1 – Absorption vs Isolation

For anyone new to the world of acoustics, there is a multitude of terms, coefficients and numbers that are thrown around.  This flood of information can seem intimidating, especially to beginners. In this series, acoustician Cameron Girard of Acoustics First® hopes to help you distinguish between what’s useful and what’s not.


Part 1: Acoustic Terminology – Sound Absorption vs Sound Isolation

In order to make informed decisions about acoustical treatment, it is vital to know the difference between materials that are meant to absorb sound within a room and materials that are meant to block sound from leaving or entering it. In an overly reverberant auditorium, absorptive treatment is needed to reduce echoes and improve speech intelligibility. If the problem is sound passing in between spaces, like offices or apartments, then isolation treatment is required. These are two separate acoustic issues which require separate solutions.

In both scenarios, it is important to know which data is relevant and helpful. Also, given sheer volume of information available on the internet, it is perhaps unavoidable that some info will be incomplete or simply incorrect.  It should not be assumed that something which sounds technical is, in fact, backed up by proper testing.

Terms for Sound Absorption

We recently encountered an acoustical ceiling tile which was said to “absorb 50% of sound”. On the surface this sounds like an extremely efficient product.  However, let’s delve in closer and decipher what is actually usable information, and what is just marketing.

When sound waves meet a room surface such as a wall, ceiling or floor, some of the sound energy is reflected back into the room and the rest is considered to be “absorbed”.  The absorbed sound energy has not vanished, it’s actually been converted into kinetic (vibration of a solid material) and thermal energy (heat due to friction within a porous material) or has simply passed right through the material (transmission). The more surface area a certain material has the better absorber it will likely be. “Soft” materials, like heavy blankets, fabric and fiberglass, have loads of nooks and crannies, which sound tries to “fill”. These porous materials are great for reducing reverberation within a room, but will only marginally reduce the sound that leaves it (but more on that later).

Sonora® wall and ceiling panels are used for absorbing sound within a space.

Sonora® wall and ceiling panels are used for absorbing sound within a space.

When comparing sound absorbing products, there is a particular set of terms you should look for: The Sound Absorption Coefficient (SAC) and Noise Reduction Coefficient (NRC). These are used to specify the fraction of incident sound that a material absorbs per 1’x1’ area. An NRC of 1.0 indicates perfect absorption (an open 1’x1’ window) and a value of 0.0 represents perfect reflection (polished concrete has an NRC of .02).

To measure sound absorption, a large sample of the material is placed in a reverberation room with all other surfaces being hard and reflective. The time it takes a test sound signal to decay by 60dB (rough point of inaudibility) after the source of sound is stopped is measured first with the sample in the room and again with the room empty. The difference in decay time defines the efficiency of the absorbing material and thus the absorption coefficients.  Large spaces with low-NRC materials (tile, drywall, etc.) have longer reverberation times, while small rooms furnished with high-NRC materials sound much more “dead”.

Clearly, a single 2’x2’ ceiling tile is not going to reduce the reverberation in a real-world space by 50%. So is the above claim false? Not exactly… The ceiling panels do have an NRC rating of .50, so the tile does absorb 50% of incident sound. However, one might assume a much more drastic improvement based on the “50%” claim. In reality you’d need a large square footage of these ceiling tiles to cut the amount of total reflected sound in half. Always be sure to check the NRC number!

Terms for Sound Isolation

Our customers often call with issues related to neighbor noise or office-to-office privacy and are looking for “sound proofing” treatment. Unfortunately, many do not realize that simply installing acoustic foam or fiberglass panels will not appreciably reduce the level noise entering and leaving their space. These absorptive materials are great at reducing unwanted reflections within a room because they are porous and air/sound energy can flow through them. That being said, they are generally poor sound barriers for this exact reason.  They will help to reduce noise buildup in a room and improve the ‘acoustics’, but will do very little to “block” sound coming in or out.

BlockAid® is a heavy impermeable barrier for stopping the transmission of sound.

BlockAid® is a heavy, impermeable barrier for stopping the transmission of sound.

Sound is like water; it will “flow” into an adjacent space if everything isn’t sealed up. Materials that are air tight and heavy, like our BlockAid® sound barrier, provide the most relief of air-born sound transmission. Continuous coverage of floors/ceilings or walls is necessary to ensure that sound doesn’t ‘flank’ around these barriers. Multiple layers of varying materials, the use of resilient clips or channels, and additional walls will provide even more control.  For a demonstration of how different materials affect sound isolation, check out our video

Like NRC for sound absorption, there is also a laboratory tested figure that can be used to compare the sound “blocking” properties of acoustic barriers and wall constructions: Transmission Loss (TL) and Sound Transmission Class (STC). These describe how much air-born sound is attenuated through a given material.

In the lab, the material to be tested is mounted over an opening between two completely separated rooms, one with a speaker (source) and the other with a microphone (receiver). Save for the open “window”, these rooms are completely isolated with thick and massive walls, so virtually all the sound energy transmitted between rooms will be through the test specimen. The difference between sound levels in the source room and the receiving room is the transmission loss (TL). The TL is measured at multiple frequencies, which is fitted to a Sound Transmission Class (STC) “curve” at speech frequencies (125Hz-4kHz). The STC of the material is the TL value of the fitted curve at 500 Hz. For example, a material with an STC of 27 typically “blocks” 27dB of sound. Keep in mind though, the STC’s of materials do not add up linearly; in other words, adding a material with an STC of 27 to an existing wall with an STC 45 will not result in an STC of 72.

As always, Acoustics First is here answer questions and help you find the best solutions.

, , , , , , , , , , , , , , ,

Leave a comment

Acoustical Material Design and Uses Q&A

Below is a Q&A session about acoustical materials.

How would you describe the existing landscape relating to acoustical systems? Where is the greatest need/ the most demand?
-Acoustical systems are deployed throughout many market segments.  Demand truly depends upon the specific type of acoustical requirement.  Applications can range from improving sound in a residential home theater to solutions to abate jet airplane noise.  Many of these projects must be examined on a case by case basis.

Popular Products
Fabric wrapped panel:
Sound Barrier:
Art Diffusors:

What are some major issues that come up or problems to be faced?
-Most problems center around improving speech intelligibility or keeping sound from disturbing others.
Improve Intelligibility with Absorbers:
Block Sound with Barriers and Isolation Poducts:

When developing different types of sound proofing/ sound dampening materials what have proved to be the most useful materials to form composites out of? Where do you usually procure these base materials?

-Many absorber products are manufactured from fluffy or porous materials such as acoustical foam and glass fiber.
Noise barriers are made from dense and heavy materials and isolation materials range from metal springs to neoprene rubber.

You can read more about the basic categories of products here:

Which materials or composites combinations have proved to be the most successful?
-The success of the material can only be measured in comparison with the application in which the material is used.  Not all applications will require the absolute best composite material.  There are varying degrees of requirements and materials that should be specified by a professional who can evaluate the project requirements.  Acoustical consultants are often used to determine the appropriate material and amounts of material for the specific project.

What surprises have you encountered while developing acoustical systems?
-Sometimes that physical limitations of materials or structures to support the materials may change the design or specification of an acoustic material.  For example, when blocking sound, massive and dense materials should be used, however, you must be sure the structure will be able to support the additional weight.  A prototype design may have the best intentions of being a great acoustical material but may have limitations when manufacturing, shipping or installing.

How big is the market for aesthetically pleasing sound proofing/ dampening systems?
-These days most markets segments are looking for materials that are aesthetically pleasing while at the same time needing them to be economical.  Visual trends are constantly changing and consumers may choose to compromise the look of a material to match their project’s budget.

Do you see any future trends? Where do they align?
-Trends are always changing based on market demand whereas material design and availability change based on the availability of access to raw goods at a fair price.  One constant that could maintain is that as the population grows one can anticipate the need for noise and sound control materials will also increase.

Do you think there is a need or interest in easily movable/ modifiable/ adjustable sound proofing/ dampening?
-Many customers would like to have the ability to remove or move their acoustical materials.  Much of this depends on the type of acoustical problem and how the will be installed.

Do you think there is a need or interest in sound proofing/ dampening that is easily cleaned? In what market do you think these exist?
-Some commercial applications such as hospitals, food service, or industrial facilities need materials that can be wiped down.  This depends on the environment in which the materials will be used.

What are some markets that have unmet needs? What is the need?
-Any markets that have sound and noise problems.


Acoustics First Corporation supplies acoustical panels and soundproofing materials to control sound and eliminate noise in commercial, residential, government, and institutional applications worldwide.  Products include the patented Art Diffusor®, sound absorbers, noise barriers, acoustical fabrics and accessories. Acoustics First® products are sold for O.E.M applications, direct, and through dealers.  For more information on acoustical materials and their application, please visit or call Toll Free 1-888-765-2900 (US & Canada).

, , , , , , , , , ,

Leave a comment