Posts Tagged cloudscape

Reverberation, the Invisible Architecture

Reverberation: the Invisible Architecture

Cloudscape® Baffles and Sonora® Panels change the sonic architecture – making the space sound smaller and more intimate.

Ever wonder what gives us a sense of space? Obviously, our eyes visually tell us what’s going on, but there are other senses that contribute. Peak your head into a dark front hall closet, and even without seeing much, you can “feel” the close proximity of the walls and perhaps even the presence of the coats. Walk in to New York’s Grand Central Station, and you are confronted by a completely different sensation. Close your eyes, and the raucous environment tells you are in a large room with a lofty ceiling. Often times we take for granted the relationship that sound has to our spatial perception.

This sonic “sense of space” can be generally attributed to the room’s reverberation qualities. In simple terms, reverberation is the sound energy that remains in the listening environment as a result of lingering reflections. Reverberation time (RT or RT60) quantifies how quickly an impulse sound decays in a space. RT60 is how quickly the amplitude (volume) of short exciting signal decreases by 60dB in a large room. Reverberation time is dependent upon the volume and surface materials of a given room. Large spaces with hard materials (tile, drywall, etc.) like Grand Central Station have longer reverberation times, while small rooms furnished with “softer” materials, like the coat closet, sound much more “dead”.

Excessive reverberation is one of the most common acoustic issues that we encounter on a daily basis. As you may have experienced at some point, it’s difficult to understand what is being said when reflections from old information cover up what is newly spoken. In spaces where speech intelligibility is paramount, like classrooms or conference rooms, a short reverberation time (under 1 second) should be targeted.

That said, sometimes a long reverberation time is desirable. In spaces like cathedrals and orchestral halls, reverberation helps create ambience for the audience by sustaining musical notes, while allowing choirs and orchestras to blend more easily. These spaces may lack a sound system, and instead utilize the room to propagate sound. Rock venues, on the other hand, have amplified instruments, so a medium-short reverb time is needed to ensure that the music won’t become “muddy” and difficult to perform and enjoy.

There are a number of questions that an acoustician must ask when recommending appropriate treatment. These questions include, but are not limited to: Is there live music in this room? What kind of music is being performed? Is speech intelligibly important? What’s the audience size and where are they in relation to the sound source? So, the ideal amount of reverberation in a space is wholly dependent on the use of the space.

Listed below are the ranges of “ideal” reverberation times at mid-frequency (average of 500 and 1000 Hz) for a variety of rooms. The numbers are derived from David Eagan’s Architectural Acoustics (New York: McGraw-Hill, 1988), in which he breaks down rooms into Speech, Music and Speech/Music spaces. We hope you find this helpful.

Optimum Reverberation Times (T60)

“Speech” Rooms
Recording and Broadcasting Studio – .3 to .7 seconds
Classroom (elementary size) – .6 to .8 seconds
Conference/Lecture Room – .6 to 1.1 seconds
Intimate Drama – .9 to 1.1s

“Speech & Music” Rooms
Cinema – .8 to 1.2 seconds
Small Theaters – 1.2 to 1.4 seconds
Multi-Purpose Auditoriums – 1.5 to 1.8 seconds
Worship Spaces – 1.4 (Churches) to 2+ seconds (Cathedrals)

“Music” Rooms
Dance Clubs and Rock Venues (w/ Sound System) – 1 to 1.2 seconds
Semi classical Concerts/Chorus (w/ Sound System) – 1.2 to 1.6 seconds
Symphonic Concerts (Classical) – 1.6 to 2.3 seconds
Liturgical (Organ/Chorus) – 2+ seconds

Contact Acoustics First to have our acousticians help you find the ideal reverb time for your space.

, , , , , , , , , ,

Leave a comment

Setting the Stage for Acoustics First

Setting the Stage for Acoustics First

Setting the Stage for Acoustics First
by Nick Colleran

Originally Published in Productions Magazine Sept/Oct 2012 issue.

Early acoustical theaters were just that – acoustic. The good news and the bad news are usually the same news when a venue sounds incredibly good at the start. An auditorium that projects natural sound well is most often over-powered and overloaded by modern musical performances and the line array sound systems that reinforce them. That’s the bad news in the good news. This type of good room will need to be modified to handle high-powered sound from modern music performances while keeping its sound-enhancing properties. All efforts can be directed into the “how” of doing the job when everyone has heard the “why” it needs to be done.

Re-engineering reinforcement – Modifications for “loud”
The hard back wall of the stage is a significant source for monitor splash-back into the performers’ microphones, reducing gain-before-feedback and enhancing opportunities for system squeals. This is in addition to promoting timing confusion due to slap-back that is usually out of sync with the music. This disturbance and annoyance can be overcome by using materials from the province of industrial noise control. A factory finish, that is a finish for the factory, is also both “roadie-proof” and “on-the-road” compatible. Yes, you can take it with you. This allows one set of materials to follow the performances from one venue to the next.

Curtain call – Reflecting on the stage
The industrial curtains called QFM for Quilted Fiberglass Materials accomplish multiple functions:
Bass control from an internal limp mass, Absorption from quilted fiberglass, and Resistance to abuse from a tough vinyl cover.

The covering is thin enough to avoid reduced effectiveness at all but the highest frequencies and strong enough to withstand stage and road wear. Hanging mass (at one time plywood) with an absorptive cover is a long-standing studio technique to control low frequencies. The newer, non-rigid barriers allow a curtain configuration that is invisible to the audience, while providing a clean sound source for the both the performers and the listeners.

Overhead, not overheard – Many are baffled
Above the stage, there is almost always a large cavity designed for lights and to accommodate rigging. This space can act as an unintended echo chamber. Being out of harms way, the area allows for a lighter and less costly sound treatment with acoustical baffles. Besides the obvious requirement that they work acoustically, they need only to be invisible (usually black) and pass the proper fire code. Acoustically, they have about twice the exposed sound absorbing surface as a wall-mounted panel, by hanging in free space. It’s more surface, less reverberation, out-of-sight and within budget. They are light enough and small enough to travel well if strung in a way that allows easy removal for relocation, such as threaded onto aircraft cable and hung in a line from side-to-side. Adding a fabric finish to the baffles, produces a more decorative product, suitable to the audience side of the auditorium when a more permanent ceiling solution is required.

Stage One – Separating Sound
Stage one of acoustical control often is the stage. Both on-stage and in-studio sound isolation usually begin with structure borne sound traveling through the floor. It is always wise to implement isolation between instruments from the beginning, where it is a “cheap” fix rather a costly solution. This can be accomplished by floating the stage surface, and doing it in several separate sections. As noted previously with the hanging back of stage curtains, mass matters. Mass can come from many different materials whose properties are heavy and dense. They can be common materials such as gypsum or sand as well as more acoustically specific items like sheet lead or mass loaded vinyl barrier. (BlockAid® is a readily available example.) Added mass damps the damage of vibration and reduces ringing resonance.

Once the stage goes “thud” when hit due to its added mass rather than a cartoonish “boing”, it is time to handle the hollow space beneath the stage and fill it with fluffy stuff. This can be whatever attic insulation that is on sale at the local home improvement store. It need only trap the air to prevent its becoming a big bass drum when stomped upon.

Way back in the days of Disco (or Disco daze), complications arose in the studio from the required “lead-foot” kick drum getting into the acoustical piano by traveling through the studio floor as vibration and transmitted up the piano legs. Although studio floors are usually isolated from other rooms, they can still connect within a room. This problem was solved by floating the drum booth independent of the common recording studio floor. At that time this author’s studio went so far as to construct a sand-filled floor set on nine truck tires. The sand provided mass and inertia while the tires created de-coupling from the common structure. Today it is accomplished with high mass materials and off-the-shelf vibration pads, at about the same cost. Independent and transportable compact structures can be created for the individual instruments and be moved with very little heavy lifting.

After stage resonance is reduced by adding a layer of mass loaded vinyl to its surface and the cavity below is stuffed with fiberglass to prevent its ringing or singing along with the music, a second stage may be layered on top of the original and floated on ribbed neoprene pads every 12 inches along standard, 16” on-center bracing. This keeps the guitar amp’s sound out of the vocal microphone stand, bass drum out of the piano legs, and so on, to create increased clarity and improved separation in the live performance.

Islands in the stage will stop transmission transit and are relatively cheap to build into the plan. Separate sections for drums, piano, singer, bassist and guitar amplifier can be buffered with half-inch strips of flexible resilient neoprene without being seen. Much like vocals can be modulated when source through the same speaker as the bass, surfing the bass wave in the stage floor can also add an undesirable tremolo (or vibrato) effect to voice or other wind instrument. (This effect can be demonstrated by auditioning a vocal through the bass player’s amplifier while playing.)

Dome details – Round and around
One technique used in early acoustical performance theaters was the overhead dome. This feature captured wasted sound energy and focused it back to the audience to reinforce sonic energy in areas where it had diminished with distance from the source. With new systems the level is electronically reinforced, not needing further enhancement, which confuses rather than clarifies. In addition, the dome creates a sonic racetrack where the sound moves around the edge in a swirling motion. Anyone who has been in a domed facility during a thunderstorm has heard how sound travels around the perimeter. The RCA dome in Indianapolis provided a good example to CEDIA attendees a few years ago . This phenomenon of raceway runaway can be abated with acoustical “speed bumps” of Melamine foam which easily bends to conform to curves*, keeping the look while truncating the travel of the fast moving sound waves. In this case being unfocused is a desirable trait.

To reduce sound getting into the dome from the line arrays and the like, hanging baffles can be placed around the front half of the perimeter of the ellipse. These may be fabric covered to blend with the décor of the audience area and made from two-inch, seven pound per cubic foot density acoustical fiberglass to extend its absorption range. Being hanging baffles they do not permanently change the original architecture, where that is a concern.

(Don’t Look) Behind the curtain – Unseen, Unheard
When acoustical treatments must be essentially permanent, high efficiency at low cost can be achieved with utility finishes that can be field-cut to fit spaces in cavities behind auditorium side curtains. Factory fit panels require precise measurements to install within curves. Field cutting skips this step as it is, by definition being, done in real time to as-built measurements rather than made to out-of-date plans. Savings derived from the unseen, utilitarian treatments can be applied to upscale finishes for panels in plain sight.

Balcony bounce-back
Another common problem for an older theater in the modern world is sound returning from the balcony face. These are usually concave surfaces that not only send sound back but focus it for feedback as well. Convex curves such as polycylindrical “barrel shapes or semi-reflective half-round, hollow traps can control concave characteristics when interspersed with thicker, flat acoustical wall panels to achieve a combined “Flat” curve.

Definition by Diffusion
Sound intensity can be reduced by the decision to destroy or diffuse. Absorption is the destructive choice, eliminating the problem by eliminating the sound. Care needs to be taken to use only what is necessary and no more.

The other alternative is to spread the sound over a larger area to reduce intensity. This can be likened to spreading peanut butter on bread – it becomes easier to swallow although it is the same quantity as the original lump from the jar. With diffusion, a little goes long way. A single barrel shaped diffuser can clear up the cacophony of a board room without the deadness of absorption required for the same amount sound clarification.

Check back After Launch
With venue retrofits, some tweaks can be made after opening. Covering all walls before there is an evaluation with performers and audience, is not always a good idea. While it may be theoretically possible to model and predict acoustical performance, it can be more economical and efficient to get the room in a reasonable range and polish to the real world result. An informed conclusion, upon hearing the room in use, can produce an optimum result.

*Contrary to popular belief, acoustical foam can be painted to match décor without affecting its performance. (The author has a copy of the independent lab report comparing painted to unpainted natural. Painted measured better, but not significantly.)

The Author 

Nick Colleran is past-president of SPARS (Society of Professional Audio Recording Services), past president of the VPSA (Virginia Productions Services Association), a former recording artist and audio engineer.  

Starting in 1978, his company began supplying unique acoustical materials. Nick now leads a “quiet life” as a principal of Acoustics First Corporation.  The company holds patents for several innovative acoustical products.

Acoustics First designs, manufactures and distributes products to control sound and eliminate noise for commercial, residential and industrial uses.

Materials Mentioned:

Vib-X™ vibration pads | BlockAid® mass loaded vinyl noise barrier | Stratiquilt™ quilted industrial blankets | Cloudscape® Baffles hanging acoustical baffles | Sonora® acoustical wall and ceiling panels | Select Sound™ black fiberglass board | Geometrix™ half-round broadband absorbers

Download of article available here:


Acoustics First Corporation supplies acoustical panels and soundproofing materials to control sound and eliminate noise in commercial, residential, government, and institutional applications worldwide.  Products include the patented Art Diffusor®, sound absorbers, noise barriers, acoustical fabrics and accessories. Acoustics First® products are sold for O.E.M applications, direct, and through dealers.  For more information on acoustical materials and their application, please visit or call Toll Free 1-888-765-2900 (US & Canada).


Originally published by Home Toys.

, , , , , , , , , , , , , , , , , , , , , , , ,

Leave a comment

Baffled by Acoustical Ceiling Treatments?

Cloudscape Ceiling Baffle (CSBF15P) 4’x2′ x 1.5″

Acoustics First® adds more ways to get ‘Baffled’ and improve large room acoustics.

Acoustics First® has ‘amped up’ the Cloudscape® line of ceiling baffles.  These acoustical baffles reduce reverberation in applications such as gymnasiums, auditoriums, performance venues, theaters and restaurants.  They can be suspended from open truss and pre-engineered suspension systems or alternatively mounted direct to a roof deck or wall.  In addition to the standard 4’x2′ x1.5″ PVC encapsulated ‘echo-nomical’ baffle, Acoustics First® has expanded the selection to include three alternate finishes.  If you wish to upgrade the size of the standard PVC Cloudscape® Ceiling Baffle, we now have a 2″ thick option available in sizes up to 4’x10′, with some limitations.  If you wish to upgrade the finish, you can choose the durable rip-stop nylon sailcloth, product code CSBF2S with 9 color choices.  If sailcloth doesn’t ‘float your boat’, choose the fabric encapsulated Cloudscape® Baffle.   The CSBF2F is encapsulated in a sewn Guilford of Maine® FR701®  fabric and will coordinate with the Sonora® ridgid acoustical wall panels.  The acoustical ceiling baffles are extended even further with an offering of exterior grade fabric for outdoor applications.  Overall, you now have 4 choices of baffle configurations, more sizes and 96 finish options.  Additionally, all the 2″ thick options use environmentally friendly Ecose® glass fiber.  For more information or to receive a quotation, please contact Acoustics First® via email,, or call Toll Free 1-888-765-2900 (US & Canada).

Cloudscape Ceiling Baffle (CSBF2S) Sailcloth Finish

Cloudscape Ceiling Baffle (CSBF2S) Sailcloth

Cloudscape Ceiling Baffle (CSBF2F) Fabric

Cloudscape Ceiling Baffle (CSBF2F) Fabric

, , , , , , , , , ,

Leave a comment